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IntroductionIntroductionIntroduction
The role of computational fluid dynamics (CFD) 
and optimization through CFD

Simulation data helps to focus experiments.
Reduce wind tunnel expenses

The promise of genetic algorithm optimization
“natural selection” in a “population” of designs
Selection takes care of design process little 
knowledge required
Multiple designs in a population parallel computing
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Problem DefinitionProblem DefinitionProblem Definition
Optimize inlet’s contribution to the efficiency of 
the engine
Significance of total pressure for efficiency

a.k.a stagnation pressure
Decreases with entropy generation
Reflects flow’s ability to do work
Total pressure recovery = pt, exit / pt, entrance

Concerns:
The shock train shock losses
Boundary layers entropy, more shock loss
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ObjectiveObjectiveObjective
“Implement a GA to design an optimum geometry for the 
turbojet flow path of a hypersonic jet engine inlet at Mach 4, 
using the L/IMX inlet as a baseline.”
Mach 4 = cutoff for turbojet
Optimum = highest possible total pressure recovery
Non-uniform flow at exit use average total pressure 
recovery over cross-section
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ApproachApproachApproach
Define and implement key components of the GA

Alleles
Chromosomes
Fitness
Initialization
Parent selection
Crossover
Mutation
Elitism
Design constraints

Validate the GA through tests
Lay out how the GA interacts with auxiliary programs, data 
files, and scripts
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Approach: AllelesApproach: AllelesApproach: Alleles
Definition: design parameter values that define an 
individual
25 total, 3 types:

Coordinates of key points along the inlet
Bias values: which way does the wall bend?
Tightness values: how sharply does it bend?
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Definition: a list of an individual’s alleles
Alleles are listen in order of type:

X-coordinate of cowl lip
Y-coordinates of all key points (x fixed)
Bias values
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Approach: InitializationApproach: InitializationApproach: Initialization
Definition: the generation of an initial population
Initial population generator (IPG) separate from 
GA
Individuals distributed randomly in design space

Uniform probability for all possibilities, each allele
L/IMX design always included
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Definition: the cross-sectional average total 
pressure recovery
CFD output (density, velocity) total pressure
CFD output is nondimensional
Accommodating non-uniform exit flow

CFD results only at discrete grid points
Riemann sum, divide by area pt, exit , pt, entrance
Total pressure recovery = pt, exit / pt, entrance
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Approach: Parent SelectionApproach: Parent SelectionApproach: Parent Selection
Definition: selection of individuals to pass on 
their alleles to the next generation
Check: 2 unique parents for crossover
Higher fitness more likely to be chosen
Roulette Wheel

Individual’s “wedge on the wheel” proportional to 
fitness
“roulette ball” stops at a random point around the wheel
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Approach: CrossoverApproach: CrossoverApproach: Crossover
Definition: 2 parent chromosomes swap or blend alleles to 
form 2 children
Occurs with 70% probability
If crossover, then for each allele, numbered 1-25:

1/3 chance alleles remain unchanged
1/3 chance alleles swapped between parents
1/3 chance blended crossover

Blended crossover
Children’s alleles = randomly weighted averages of parents

achild1 = γaparent1 + (1-γ)aparent2

achild2 = γaparent2 + (1-γ)aparent1
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Approach: MutationApproach: MutationApproach: Mutation
Definition: a random allele changes its value
Occurs for every new individual except the one 
copied through elitism
One allele chosen at random per individual
Allele value changes to any value in design space
Uniform probability of all possibilities
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Approach: ElitismApproach: ElitismApproach: Elitism
Definition: automatically copy the individual with 
the highest fitness is into the nest generation
The only exception to crossover and mutation
The best fitness cannot decrease over 
generations.
Speeds convergence

Favors high fitness
May converge too soon for small populations
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The inlet walls cannot intersect
The cowl lip must be upstream of the shock off 
the ramp
Retry generating the individual if it violates a 
constraint
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Approach: ValidationApproach: ValidationApproach: Validation
Use dummy fitness function to test GA 
performance
Dummy fitness function: 

f(x) = | cos((x-400)/25) * e-|(x-400)/400| |
x = sum of allele values
Resulting changes for improvement:

Don’t have all designs on one side of optimum
Give initial population uniform probability across design 
space
Give mutation uniform probability across design space
Increase mutation to 100% probability of occurrence
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Approach: ValidationApproach: ValidationApproach: Validation
Use L/IMX inlet to test actual fitness calculations
After debugging, total pressure recovery = 0.4377
Resulting changes for improvement:

gridline distribution function from grid generator -> 
average by area
Read from binary result file, not ASCII
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Approach: Analysis ToolsApproach: Analysis ToolsApproach: Analysis Tools

Overflow
CFD software, calculates flow behavior
Input: Plot3D grid, boundary conditions, 
“restart” options
Output: density, velocity vectors at 
gridline intersections
Boundary conditions: inviscid 
approaching inlet, viscid inlet walls
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Grid generation
GA outputs 2D grid file
“makegrid” script converts to nominally 
3D file for Overflow
Grid concentration near walls, ramp 
corners, cowl lip
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EnSight
Visualizes grid files, 
Overflow result files
Color codes 
according to flow 
properties 
(temperature, Mach, 
pressure, etc.)
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Programs and files across 
2 machines

Columbia, NASA 
supercomputer at Ames
Lou, NASA mass storage 
machine

Batch script calls:
IPG to begin
GA for each generation
moves files as needed.
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Functional Initial Population Generator (IPG)
Well distributed across design space
Avoids constraint violations

Functional fitness calculation
Functional random number generator

Does not repeat between runs of the program
Does not repeat when called repeatedly in program

Functional GA
Fitness improves from baseline and never backslides
Performance improves with larger populations, but computing 
time limited for this project
Avoids constraint violations
Well-tested grid generation

Functional Initial Population Generator (IPG)Functional Initial Population Generator (IPG)
Well distributed across design spaceWell distributed across design space
Avoids constraint violationsAvoids constraint violations

Functional fitness calculationFunctional fitness calculation
Functional random number generatorFunctional random number generator

Does not repeat between runs of the programDoes not repeat between runs of the program
Does not repeat when called repeatedly in programDoes not repeat when called repeatedly in program

Functional GAFunctional GA
Fitness improves from baseline and never backslidesFitness improves from baseline and never backslides
Performance improves with larger populations, but computing Performance improves with larger populations, but computing 
time limited for this projecttime limited for this project
Avoids constraint violationsAvoids constraint violations
WellWell--tested grid generationtested grid generation



ResultsResultsResults

Improved design from small-scale run
Total pressure recovery of baseline = 0.4377
Improved total pressure recovery = 0.4450
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Future WorkFuture WorkFuture Work

Improved compatibility with Columbia
Run large-population, many-generation cases

Possibly multiple days each to run on Columbia
Generations of >100 individuals
Thoroughly explore design space

Tweak GA to improve efficiency
Alternate parent selection methods
Crossover, mutation probabilities
Alternate crossover, mutation setup

Tweak constraints, coordinating with L/IMX
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